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Abstract. It is shown that the propagator in single-file systems may quite generally be deduced 
from the propagator in the corresponding u ~ e ~ t r i n e d  case. Irrespective of i l l  shllchm in the 
unresvieted case, the propagator of single-file systems in the longtime limit approaches a 
Gaussian distribution. It is found that the exponent of the time dependence of the mean-square 
displacement is reduced by a hctor of two. compared with the unrestricted case. Examples for 
different models of particle propagation are cnnsidered and compared with litemme data For 
one model the theoretical result is compared with a molecular dynamics simulation. 

One-dimensional arrays of particles, where the individual particles are not allowed to change 
the order of their arrangement are generally referred to as single-file systems. Consequently, 
a particular particle in a single-file system will permanently remain between the same 
neighbours. The displacement of a given particle over a long distance will therefore 
necessitate the shift of many other particles into the same direction, leading to a high 
degree of mutual correlation between the movement of different particles. This correlation 
substantially complicates the description of the dynamic behaviour of single-file systems 
and has made them a challenging topic of both fundamental research [ 1-31 and applied 
studies [MI. 

A realization of a single-file system should occur in some types of zeolites, e.g. 
Mordenite, ZSM-12, or AlP04-5. These zeolites have a one-dimensional pore structure 
with such diameters that molecules diffusing in these pores cannot pass each other. This 
situation should lead to single-file behaviour of the diffusing particles. Due to the catalyic 
capabilities of zeolites there is a considerable interest in investigating the transport properties 
of molecules in zeolites. The effectivity of catalytic reactions does not depend only on the 
reaction rate in the zeolite but also on the availability of the reaction products outside the 
zeolite. This, however, depends strongly on the transport and diffusion behaviour of the 
molecules. 

Single-file systems have so far generally been assumed to contain random walkers. 
The exclusion of mutual passages of the random walkers in single-file systems has been 
shown to lead to a mean-square displacement which is proportional to the square root of the 
observation time [I-31 rather than to the observation time itself, as in the case of unrestricted 
walkers. 

Generally, the dynamic behaviour of multi-particle systems is represented in terms of 
the so-called propagator P ( z ,  t), i.e. the probability density that during a time interval f an 
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arbitrarily selected particle will be shifted over a distance z. In what follows, a method will 
be presented by which the propagator of a singlefile system may easily be derived from 
the main features of the ‘free’ propagator, i.e. of the propagator in the unrestricted case. 
The method applies to random walkers as well as to any other type of particle propagation. 

Let us ineoduce the free propagator S ( s , t ) ,  which describes the motion of non- 
interacting particles in the given system, i.e. the motion of particles that do not feel the 
presence of any other particle. Pr(s, t )  can be found by investigating the motion of a single 
particle in the given system. In certain non-ergodic cases, one has additionally to sum or 
integrate over all initial conditions. Later it will be shown that the particular shape of the 
free propagator does not play any role for the long-time behaviour of the single-file system. 
It is only the mean-square displacement and its time dependence which are essential. 

For deriving the propagator under single-file conditions, we will first consider the 
interaction of adjacent point-lie particles. Assuming that the two particles interact in 
the interior of a box and that it  is only possible to determine the velocities and instants of 
time when the particles enter and leave thii box, there is no way of determining whether the 
particles have freely passed each other without any interaction or whether the particles did 
interact, thus maintaining their relative positions to each other. This means that the spatial 
distribution of particles after a certain time t is exactly the same for both interacting and 
non-interacting particles. However, in contrast to the spatial distribution, the order of the 
particles is different. While non-interacting particles may mutually exchange their positions 
leading to a complete collapse of the initial order, this order is preserved over all times in 
the case of interacting particles (see figure 1). 
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Figure 1. Spatial distribution and particle order for the cases of non-interacting and interacting 
particles. (a) Initial state at I = 0. (b) Final state for non-interacting particles, the particles have 
changed their order. (e) Find state for interacting particles (single-file behaviour); the order of 
particles is as io (a) md their spatial distribution as in (b). 

This situation can be used to calculate the propagator P(z, I) of the single-file system 
from the free propagator P&, f ) ,  where we shall use the notation z and s to distinguish 
between shifts in the interacting and non-interacting system. In our derivation of the 
propagator a positve particle shift z is assumed. Due to symmetry, the relation P(z. E) = 
P(-z, E) holds and the result for negative shifts is obtained by taking the absolute value IzI. 

For the calculation it is easier to consider the probability 
m 

W ( z .  t )  = dz’ P(z’, t )  (1) 

that a particle is shifted over a distance greater than z, than the propagator itself. 
To allow a shift of a given particle from the starting point zo = 0 to the end-point z 

in a single-file system, all particles initially between a and z must be finally on the right 
of z. Ineoducing the probability ur,(z, n) of finding n particles in the region 20. .  . z ,  and 
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the probability wz(t, k )  that k particles are shifted from the left of a certain position to the 
right during r, one may write 

m m 

W z , t )  = C w i ( z , n )  wz( t ,k )  (2) 
"=O k=n+l 

where the first sum runs over the number n of particles in a.. . z ,  and the second sum runs 
over the number k of particles which are on the right of z after time t. W(z. t )  does not 
include the case that the particle does not move, i.e. the shift z = 0. This case will be 
considered separately. It should be noted that, strictly speaking, the probability wZ(t, k )  is 
not independent of n (and z), implying a correlation between W I  and wz. However, it will 
be shown, that this correlation may be neglected without substantially affecting the final 
result. 

The particles are assumed to be distributed statistically uniformly over the infinite chain 
with density 

c = NIL (3) 
where N is the average number of particles in a region of length L.  The probability W I  ( z ,  n )  
is then given by the Poisson distribution 

For the determination of the probability w&, k) we make use of the above consideration, 
that the evolution of the spatial distribution of interacting and non-interacting particles is 
identical. Hence the number k of particles which are initially on the left of z and finally 
on the right of z is also the same. The probability w2(t, k )  can therefore be determined 
using the free propagator of the non-interacting system. Thus, in a manner similar to that 
in [3]. where the treatment of correlated movements in single-file systems was made possible 
by considering the uncorrelated movement of the 'holes' rather than that of the particles, 
in the present context we refer the (correlated) particle movement in single-file systems 
to the uncorrelated movement of non-interacting particles. The net number k of particles 
propagating to the right of position z during t is obviously equal to the difference k, - kl of 
the numbers of particles which pass z to the right and to the left, respectively. The instants 
of time at which non-interacting particles are passing a given point follow a statistically 
uniform distribution, so that the probability p ( t ,  m) that m particles pass z during time t is 
again given by a Poisson distribution 

b"' 
m !  

p( t ,  m) = -e-b 

where b is the average number of particles passing point z during t .  The time dependence 
of p ( t ,  m )  is included in that of b. 

This quantity b, and with it equation (5). obviously depends on the density of the 
particles on their starting positions on the left- and right-band sides of z ,  respectively. 
Following the notation of (3). the particle density is equal to n / z  in the interval zo . . . z, 
while it is equal to the constant value c = NIL [cf equation (3)] elsewhere. It is the 
specification of the particle density in the interval 20. . . z which produces a correlation 
between the probabilities and wz. For sufficiently large time intervals, however, the 
majority of the particles passing position z from the left will stem from positions on the 
left-hand side of a, where the particle density is the same as on the right-hand side of 
position z. It is therefore justified to use equation (5) with the same value of b for the 
particles passing z from the left and from the right. The assumption that most of the 
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particles passing position z are from outside the interval 2 0 . .  . z, is obviously most critical 
for large intervals z and hence for large mean particle numbers cz. In this case, however, 
the Poisson distribution will exhibit a sharp maximum near cz, so that again the same 
probability function p ( f .  m) may be used for the particles stemming from either side of 
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position z. 
The parameter b may be determined by integrating over the probabilities that a particle 

is foundinitially on the left of position z and will be found on a position on the right of z 
after t :  

(6) b = . L  dz’ c dS dr Pf(S, t )  = ;c(lsl) 

where ([SI) = $-”, ds Is1 P&, t) denotes the mean absolute shift of a non-interacting particle. 
With the function p ( f ,  m) thus determined, the probability mz(t, k = k, - kl) becomes 

where the l k  are the modified Bessel functions [7]. 
Inserting equations (4) and (7) into (2), by using equation (1) one obtains 

where &z, f )  denotes the propagator at z # 0. Some simple reordering and index shifting 
result in 

The sum over the Bessel functions can be simplified as 

and thus one obtains for the propagatoi 

The infinite sum can be solved analytically [SI and the propagator is found to be 

As mentioned in connection with equation (2). the function 6(z, t )  thus determined does 
not include the c s e  that the particle remains at z = 0. In this case the numbers of particles 
passing the position z = 0 from the left and from the right are the same. According to (7) 
the probability for that case is 

wz( f ,  0) = Za(2b) e-%. (13) 

The complete propagator is therefore given by 
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where the Dirac delta function 6 ( z )  has been included because the term lo(2b)e-2b applies 
only to z = 0. As it should be, the propagator is normalized, i.e. ~ ~ ~ d z  P ( z ,  t )  = 1, and 
P(z,O) = S(Z). 

The mean-square displacement (being identical with the second moment) is defined as 

(15) 
m 

(2') = a  1 dz z2P(z, t ) .  
-m 

Inserting equation (14) one obtains 

(16) 
2b 
CZ 

= -{1 + [11(2b) + 10(2b)Ie-~l. 

For large times t ,  and hence for large values of b, the Bessel functions behave as 

1,(2b) -+ ( 4 ~ b ) - ' ~ ' e ~  (17) 
so that the mean-square displacement becomes 

2b 
( 2 2 )  = 3' 

In the special case of single-file diffusion of random walkers, the propagator for long 
times has been shown to approach a Gaussian distribution [3]. In what follows it will be 
demonstrated that this is true for any type of movement in single-file systems. For this 
purpose, we consider the propagator &z, t )  for z # 0. For long times, and thus for large 
b, according to (17) the Bessel functions behave as 

1.((4b2+4clzlb)f) + (2n)-'/2(4b2+4clzlb)-t exp{(4b2+4clzlb)f} (19) 

and, inserting this relation into (12), the propagator becomes 

Using the Taylor expansion for the square root in the exponent 

one obtains for the propagator 

c2 2 c3 
p ( z , t )  = c(4nb)-'/' - - z  + -2 .. . 

46 8b2 
In the limit of large b only the leading terms in the sums contribute to the result and 
substituting the mean-square displacement {z2) for 2bfc2, the propagator in the long-time 
limit finally becomes 
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which is exactly the Gaussian distribution. The second summand in (14).  which was added 
to describe the propagator at z = 0 correctly, vanishes for large times t .  Thus, independent 
of the shape of the unrestricted propagator, the propagator of a single-file system is found 
to approach a Gaussian distribution in the long-time limit. 

For particles with non-vanishing radius r the treatment must be modified slightly. Let 
us again assume that the particles interact in a box of length Lb and that only the velocities 
and instants of time when the particles are entering or leaving the boxes are known. Now, 
in contrast to the case of infinitely small particles, it is possible to distinguish between 
interacting and non-interacting particles: The average distance covered by interacting 
particles within a box is equal to Lb - 2r, while non-interacting particles have to move 
over the total length Lb. Consequently, the mean lifetimes of the particles within the boxes 
are different. However, by changing the box length for interacting particles to Lb + 2r ,  the 
two cases may again be made indistinguishable. From this it follows that the results for a 
system with particles with radius r may be found from a system with point-like particles by 
an appropriate change of the length scale. Obviously, the shifts of particles with radius r in 
a single-file system with N particles per length L,  are the same as the shifts of point-like 
particles in a system with length 

(24) 
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L = L,  - 2rN = L,(1 - e) 
where 0 = 2 r N / L ,  is the relative amount of space occupied by particles (relative 
occupancy). With 
equation (24) they become 

The only space-dependent parameters are the quantities b and c. 

N N 
L L , ( 1 - 0 )  

c = - =  

1 N  I N  
2 L  2 L r ( 1 - 8 )  tJ = ---(ISl) = - (1st). 

Inserting these relations into (18) yields 

with c, = N / L , .  (1 - 0)/c, is simply the clearance between two adjacent particles, 
which may also be interpreted as the mean free path between succeding particle encounters. 
According to (27). the mean-square displacement in single file systems is therefore simply 
the product of the mean shift of a free (i.e. non-interacting) particle and its mean free path 
in the case of interaction. 

The formalism thus derived will now be used for the treatment of a few special cases. 
For a random walker with jump length I and time step 5 ,  the free propagator is 

with D = 12/2r denoting the diffusion coefficient. With equation (28), the mean shift is 
found to be 

The particle diameter 1 ,  particle concentration c,, and relative occupancy 8 are related to 
each other by the expression c, = 011. Thus, from (27)  one finally obtains 
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which is identical with the result known from the literature [l-31. 
Let us now consider an ensemble of hard spheres of radius r which move completely 

deterministic in a narrow tube. Let the spheres have simply two velocities : vo and -vo. 
The mean displacement for free particles is then 

(14) = UOf (31) 

and, via (27), the mean-square displacement in the single-file system becomes 

The same result would be obtained for spheres characterized by a Gaussian velocity 
distribution with the free propagator 

The mean absolute shift obtained from this propagator is 

and, therefore, choosing ( u 2 )  = (z/2)u$ the mean displacement of the free particles is found 
to be the same as that given by (31), so that consequently also the single-file propagator 
and the mean-square displacement are the same as in the case considered previously. 

The case of the Gaussian velocity distribution was also investigated by a molecular 
dynamics simulation. The system was simulated by 5000 particles using the velocity-Verlet 
method [9, IO] in the microcanonical ensemble. The particle-particle interaction was given 
by a shifted force LennardJones 12-6 potential 

for r > 1,. 

The cut is at r, = kP and the constants CI and c? are set to values which ensure that both 
potential and force vanish at r = rc. The particle diameter is set to up = 0.383 nm and 
cP is set equal to 164ks ( k ~  denoting the Boltzmann constant). The mass of a particle was 
chosen to be m = 83.8 U (with U denoting the unified atomic mass unit). The interaction 
between the particles and the tube was simulated by a well potential 

where pc = ot/%. p denotes the distance between the tube axis and the centre of the 
particle. The parameters are set to U, = 0.12 nm and et = 15Ok~. This choice of the 
parameters ensures that mutual passages of particles could be excluded. 

To simulate an infinite tube, periodic boundary conditions in the z-direction are 
used. This boundary condition effects that with increasing observation time the mean- 
square displacement approaches a finite value. For a given particle density, this value is 
proportional to the length of one period, and hence to the number of particles considered. 
The number of particles in our simulation (5000) was chosen to be large enough so 
that during the observation time considered such finite-size effects did not influence the 
simulation results. 
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The average distance between adjacent particle centres was chosen to be equal to 50, 
leading to a particle density c, = (5uP)-’ and to a relative occupancy 0 = 0.2. With 
this choice the range of interaction (2up) is short in comparison with the average distance 
between the particles. Therefore, the iheoretical results, which were obtained for particles 
with a hard interaction potential, should be applicable. 

The simulation was done at a temperature of T = 300 K which leads to a mean-square 
displacement in the single-file system of 

A more detailed description of the molecular dynamics simulation together with extensive 
simulations for a variety of systems is given in a forthcoming paper [ 111. 

1 Thw\../ 

( r2)  (m2) le-I7 

le-18 

I , , , , , , , ,  , , , , , , ,,, , , 1 Simulation 

le-I9 
le11 le-IO l e 4 9  

I (s) 

Figure 2. Comparison of theoretical result and molecular dynamics simulation. The staristical 
emrs in the simulation results are very small due to the large number of particles (5WO) used 
in the simulation. 

Figure 2 shows the results of the simulation. For times f > lo-” s the theoretical 
curve and the simulation results are found to be in good agreement. For shorter simulation 
times the probability for an interaction with the next particle is small and the particles move 
essentially as free particles. This short-time behaviour is not included in the theoretical 
consideration given above. The excellent agreement is somewhat surprising because the 
theoretical result was obtained for an ideal one-dimensional system. The simulation, 
however, was done in a system where the particles can move in all three directions. Hence, 
any interaction between two particles is accompanied by a momentum transfer between 
the radial direction and the z-direction. One has to conclude therefore, that the degrees of 
freedom in x -  and y-direction of molecular motion do not lead to any essential deviation 
from the ideal one-dimensional case. 

It is interesting to note that in the last example the mean-square displacement of the 
particles in the single-file system is found to be proportional to t rather than to &, as 
in the case of a single-file system consisting of random walkers. This, however, is the 
immediate consequence of the proportionality of (z*) and (181). Assuming that the mean- 
square displacement in the non-interacting system is (2) cx f m  and thus (Is!) a tmlz, the 
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mean-square displacement in the single-file system becomes ( z z )  ci (Isl) ci tm/2.  Hence, the 
exponent of the time dependence of the mean-square displacement is reduced by a factor 
of two in comparison with the case of non-interacting particles. 

It has thus turned out that the time behaviour of a single-file system is exclusively 
determined by the mode of movement of the individual particles. If a particle moves in 
a completely random way, e.g. due to a stochastic interaction with the crystal lattice in a 
zeolite with one-dimensional pore structure, the mean-square displacement of the single-file 
system becomes proportional to the square root of time. Otherwise. if a particle moves 
in a completely deterministic way and if a change of the velocity is only possible due to 
interaction with other particles of the same kind, the mean-square displacement becomes 
proportional to t .  If the forces acting on a particle and leading to the random motion are 
small, then, at a certain time scale, there will be a transition from deterministic to random 
behaviour. At this time scale the exponent of the time dependence of the mean-square 
displacement in the single-file system will change from 1 to f .  

Table 1. The time behaviour of the mean-square displacements (z2) in the case of one- 
dimensional single-file diffusion and of ordinary diffusion. In the case of single-file diffusion the 
time behaviour depends on the behaviour of a single, isolated particle, while the time dependence 
during ordinary diffusion is independent of the mode of motion of individual particles. (Isl) 
denotes the mean absolute shin of a single non-interacting particle. 

Single particle Single-file diffusion Ordinary diffnslon 
(14) (22) (22) 

Table 1 summarizes the time behaviour of a single file system dependent on the mean 
absolute shift of a single particle. For comparison, the time behaviour for ordinary (e.g. 
three-dimensional diffusion) is also included. 

In this case, independent of the behaviour of a single particle, the mean-square 
displacement is proportional to the time t .  The deterministic case would be represented, 
e.g. by a low-density gas, where the atoms'move without any change of velocity until they 
interact with another atom. The case of random motion would be given by a system of 
Brownian particles in a gas which move randomly due to the influence of the gas molecules 
and which interact with each other. In both cases the mean-square displacement is clearly 
proportional to t .  
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